Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Biochemistry ; 60(46): 3449-3451, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1590174

ABSTRACT

Single-particle cryogenic electron microscopy (cryo-EM), whose full power was not realized until the advent of powerful detectors in 2012, has a unique position as a method of structure determination as it is capable of providing information about not only the structure but also the dynamical features of biomolecules. This information is of special importance in understanding virus-host interaction and explains the crucial role of cryo-EM in the efforts to find vaccinations and cures for pandemics the world has experienced in the past decade.


Subject(s)
Cryoelectron Microscopy , Host Microbial Interactions , Single Molecule Imaging , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Dengue/epidemiology , Dengue/prevention & control , Dengue/virology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Pandemics/prevention & control , Viral Vaccines/administration & dosage , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
2.
Sci Rep ; 11(1): 19713, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454811

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) presents with non-specific clinical features. This may result in misdiagnosis or delayed diagnosis, and lead to further transmission in the community. We aimed to derive early predictors to differentiate COVID-19 from influenza and dengue. The study comprised 126 patients with COVID-19, 171 with influenza and 180 with dengue, who presented within 5 days of symptom onset. All cases were confirmed by reverse transcriptase polymerase chain reaction tests. We used logistic regression models to identify demographics, clinical characteristics and laboratory markers in classifying COVID-19 versus influenza, and COVID-19 versus dengue. The performance of each model was evaluated using receiver operating characteristic (ROC) curves. Shortness of breath was the strongest predictor in the models for differentiating between COVID-19 and influenza, followed by diarrhoea. Higher lymphocyte count was predictive of COVID-19 versus influenza and versus dengue. In the model for differentiating between COVID-19 and dengue, patients with cough and higher platelet count were at increased odds of COVID-19, while headache, joint pain, skin rash and vomiting/nausea were indicative of dengue. The cross-validated area under the ROC curve for all four models was above 0.85. Clinical features and simple laboratory markers for differentiating COVID-19 from influenza and dengue are identified in this study which can be used by primary care physicians in resource limited settings to determine if further investigations or referrals would be required.


Subject(s)
COVID-19/pathology , Dengue/pathology , Influenza, Human/pathology , Adult , Area Under Curve , COVID-19/complications , COVID-19/virology , Cohort Studies , Dengue/complications , Dengue/virology , Diagnosis, Differential , Diarrhea/etiology , Female , Fever/etiology , Humans , Influenza, Human/complications , Influenza, Human/virology , Lymphocyte Count , Male , Middle Aged , Platelet Count , RNA, Viral/analysis , RNA, Viral/metabolism , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Vomiting/etiology , Young Adult
3.
J Infect Dis ; 223(3): 399-402, 2021 02 13.
Article in English | MEDLINE | ID: covidwho-1387901

ABSTRACT

Social distancing (SD) measures aimed at curbing the spread of SARS-CoV-2 remain an important public health intervention. Little is known about the collateral impact of reduced mobility on the risk of other communicable diseases. We used differences in dengue case counts pre- and post implementation of SD measures and exploited heterogeneity in SD treatment effects among different age groups in Singapore to identify the spillover effects of SD measures. SD policy caused an increase of over 37.2% in dengue cases from baseline. Additional measures to preemptively mitigate the risk of other communicable diseases must be considered before the implementation/reimplementation of SARS-CoV-2 SD measures.


Subject(s)
COVID-19/transmission , Dengue/transmission , Physical Distancing , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Dengue/epidemiology , Dengue/virology , Humans , Middle Aged , Public Health , Risk Factors , SARS-CoV-2/isolation & purification , Singapore/epidemiology , Young Adult
4.
Commun Biol ; 4(1): 557, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1387494

ABSTRACT

Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.


Subject(s)
Defective Viruses , Dengue Vaccines/therapeutic use , Dengue Virus/growth & development , Dengue/prevention & control , Virus Replication , Animals , Cell Line, Tumor , Chlorocebus aethiops , Defective Viruses/genetics , Defective Viruses/metabolism , Dengue/virology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions , Humans , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Viral Load
5.
Viruses ; 13(8)2021 08 18.
Article in English | MEDLINE | ID: covidwho-1376994

ABSTRACT

Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.


Subject(s)
Disease Models, Animal , Tupaia , Virus Diseases , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Animals , COVID-19/virology , Dengue/immunology , Dengue/pathology , Dengue/virology , HIV Infections/virology , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/immunology , Influenza, Human/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Zika Virus Infection/immunology , Zika Virus Infection/pathology , Zika Virus Infection/virology
6.
Viruses ; 13(7)2021 07 19.
Article in English | MEDLINE | ID: covidwho-1325784

ABSTRACT

As demonstrated with the novel coronavirus pandemic, rapid and accurate diagnosis is key to determine the clinical characteristic of a disease and to improve vaccine development. Once the infected person is identified, hematological findings may be used to predict disease outcome and offer the correct treatment. Rapid and accurate diagnosis and clinical parameters are pivotal to track infections during clinical trials and set protection status. This is also applicable for re-emerging diseases like dengue fever, which causes outbreaks in Asia and Latin America every 4 to 5 years. Some areas in the US are also endemic for the transmission of dengue virus (DENV), the causal agent of dengue fever. However, significant number of DENV infections in rural areas are diagnosed solely by clinical and hematological findings because of the lack of availability of ELISA or PCR-based tests or the infrastructure to implement them in the near future. Rapid diagnostic tests (RDT) are a less sensitive, yet they represent a timely way of detecting DENV infections. The purpose of this study was to determine whether there is an association between hematological findings and the probability for an NS1-based DENV RDT to detect the DENV NS1 antigen. We also aimed to describe the hematological parameters that are associated with the diagnosis through each test.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Dengue/diagnosis , Adolescent , Adult , Asia/epidemiology , Child , Child, Preschool , Colombia/epidemiology , Dengue/virology , Dengue Virus/isolation & purification , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Pandemics , Polymerase Chain Reaction , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , Young Adult
7.
J Med Virol ; 93(11): 6073-6076, 2021 11.
Article in English | MEDLINE | ID: covidwho-1318724

ABSTRACT

The Cook Island government has made several efforts to ensure zero confirmed cases and transmission of COVID-19, especially among visiting travelers. However, the Cook Island ministry of health has to deal with the new strain of dengue fever outbreak, known as dengue fever type 2 (DEN-2), by adopting several measures to control its spread, especially in the affected parts of the subtropical country. This paper aims to describe the dengue fever response taken in Cook Island and suggest recommendations to control the risk of transmission in endemic parts of the world.


Subject(s)
Dengue/epidemiology , Disease Outbreaks , COVID-19/diagnosis , COVID-19/epidemiology , Dengue/diagnosis , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Endemic Diseases , Humans , Mosquito Control , Polynesia/epidemiology , Serogroup
8.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
9.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1246687

ABSTRACT

BACKGROUND: The clinical consequences of SARS-CoV-2 and DENGUE virus co-infection are not promising. However, their treatment options are currently unavailable. Current studies have shown that quercetin is both resistant to COVID-19 and DENGUE; this study aimed to evaluate the possible functional roles and underlying mechanisms of action of quercetin as a potential molecular candidate against COVID-19 and DENGUE co-infection. METHODS: We used a series of bioinformatics analyses to understand and characterize the biological functions, pharmacological targets and therapeutic mechanisms of quercetin in COVID-19 and DENGUE co-infection. RESULTS: We revealed the clinical characteristics of COVID-19 and DENGUE, including pathological mechanisms, key inflammatory pathways and possible methods of intervention, 60 overlapping targets related to the co-infection and the drug were identified, the protein-protein interaction (PPI) was constructed and TNFα, CCL-2 and CXCL8 could become potential drug targets. Furthermore, we disclosed the signaling pathways, biological functions and upstream pathway activity of quercetin in COVID-19 and DENGUE. The analysis indicated that quercetin could inhibit cytokines release, alleviate excessive immune responses and eliminate inflammation, through NF-κB, IL-17 and Toll-like receptor signaling pathway. CONCLUSIONS: This study is the first to reveal quercetin as a pharmacological drug for COVID-19 and DENGUE co-infection. COVID-19 and DENGUE co-infection remain a potential threat to the world's public health system. Therefore, we need innovative thinking to provide admissible evidence for quercetin as a potential molecule drug for the treatment of COVID-19 and DENGUE, but the findings have not been verified in actual patients, so further clinical drug trials are needed.


Subject(s)
COVID-19 Drug Treatment , Dengue Virus/chemistry , Dengue/drug therapy , Quercetin/chemistry , SARS-CoV-2/chemistry , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Chemokine CCL2/chemistry , Chemokine CCL2/drug effects , Chemokine CCL2/genetics , Coinfection/drug therapy , Coinfection/genetics , Coinfection/virology , Dengue/complications , Dengue/genetics , Dengue/virology , Dengue Virus/drug effects , Humans , Interleukin-17/genetics , Interleukin-8/chemistry , Interleukin-8/drug effects , Interleukin-8/genetics , NF-kappa B/drug effects , NF-kappa B/genetics , Protein Interaction Maps/drug effects , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics
10.
PLoS Negl Trop Dis ; 15(5): e0009441, 2021 05.
Article in English | MEDLINE | ID: covidwho-1243839

ABSTRACT

The dengue fever epidemic in Guangzhou may have been affected by the Coronavirus Disease 2019 (COVID-19) pandemic. The number of dengue cases dropped drastically in 2020, and there have been only 2 local cases, suggesting that dengue has not become endemic in Guangzhou.


Subject(s)
COVID-19/epidemiology , Dengue/epidemiology , Dengue/prevention & control , SARS-CoV-2 , China/epidemiology , Dengue/virology , Dengue Virus/genetics , Humans , Quarantine
11.
J Med Virol ; 93(3): 1770-1775, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196472

ABSTRACT

Herein, we report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and dengue coinfection, presented as a fatal stroke in our hospital, in São José do Rio Preto, São Paulo State, a Brazilian city hyperendemic for dengue viruses and other arthropod-borne viruses (arboviruses) and currently facing a surge of SARS-CoV-2 cases. This case is the first described in the literature and contributes to the better understanding of clinical presentations of two important diseases in a tropical setting.


Subject(s)
COVID-19/complications , Coinfection/complications , Dengue Virus/pathogenicity , Dengue/complications , SARS-CoV-2/pathogenicity , Stroke/etiology , Stroke/virology , Arboviruses/pathogenicity , Brazil , COVID-19/virology , Coinfection/virology , Dengue/virology , Female , Humans , Middle Aged
12.
PLoS Negl Trop Dis ; 15(3): e0009259, 2021 03.
Article in English | MEDLINE | ID: covidwho-1127761

ABSTRACT

Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.


Subject(s)
Chikungunya Fever/epidemiology , Dengue/epidemiology , Zika Virus Infection/epidemiology , Aedes/physiology , Aedes/virology , Animals , Chikungunya Fever/economics , Chikungunya Fever/virology , Chikungunya virus/physiology , Climate , Colombia/epidemiology , Dengue/economics , Dengue/virology , Dengue Virus/physiology , Economic Factors , Ecosystem , Humans , Mosquito Vectors/physiology , Mosquito Vectors/virology , South America , Temperature , Zika Virus/physiology , Zika Virus Infection/economics , Zika Virus Infection/virology
13.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1117221

ABSTRACT

Positive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of this include flaviviruses, such as dengue virus and Zika virus, which cause millions of yearly infections around the globe, and coronaviruses, such as SARS-CoV-2, the source of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of research aimed at determining methods to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective treatments. Here, we describe the generation and characterization of a reporter system that can be used to visualize and identify cells infected with dengue virus or SARS-CoV-2. This system is based on viral protease activity that mediates cleavage and nuclear translocation of an engineered fluorescent protein stably expressed in cells. We show the suitability of this system for live cell imaging, for visualization of single infected cells, and for screening and testing of antiviral compounds. With the integrated modular building blocks, this system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCE Reporter systems are useful tools for fast and quantitative visualization of virus-infected cells within a host cell population. Here, we describe a reporter system that takes advantage of virus-encoded proteases expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the GFP moiety translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


Subject(s)
COVID-19/virology , Dengue Virus/isolation & purification , Dengue/virology , SARS-CoV-2/isolation & purification , A549 Cells , Animals , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Dengue/diagnosis , Dengue/metabolism , Dengue/pathology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Nuclear Localization Signals/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication
15.
Biomolecules ; 11(1)2020 12 24.
Article in English | MEDLINE | ID: covidwho-1000233

ABSTRACT

Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.


Subject(s)
Antiviral Agents/therapeutic use , Dengue/drug therapy , Phenols/therapeutic use , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Dengue/genetics , Dengue/pathology , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/pathogenicity , Humans , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Vero Cells/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
16.
Curr Opin Virol ; 43: 71-78, 2020 08.
Article in English | MEDLINE | ID: covidwho-987407

ABSTRACT

The first licensed dengue vaccine led to considerable controversy, and to date, no dengue vaccine is in widespread use. All three leading dengue vaccine candidates are live attenuated vaccines, with the main difference between them being the type of backbone and the extent of chimerization. While CYD-TDV (the first licensed dengue vaccine) does not include non-structural proteins of dengue, TAK-003 contains the dengue virus serotype 2 backbone, and the Butantan/Merck vaccine contains three full-genomes of the four dengue virus serotypes. While dengue-primed individuals can already benefit from vaccination against all four serotypes with the first licensed dengue vaccine CYD-TDV, the need for dengue-naive population has not yet been met. To improve tetravalent protection, sequential vaccination should be considered in addition to a heterologous prime-boost approach.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Animals , Dengue/immunology , Dengue/virology , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Dengue Virus/physiology , Drug Development , Humans
17.
Euro Surveill ; 25(36)2020 09.
Article in English | MEDLINE | ID: covidwho-976158

ABSTRACT

In August 2020, during the coronavirus disease (COVID-19) pandemic, five locally acquired cases of dengue virus type 1 were detected in a family cluster in Vicenza Province, North-East Italy where Aedes albopictus mosquitoes are endemic. The primary case was an importation from West Sumatra, Indonesia. This is the first outbreak of autochthonous dengue reported in Italy. During the COVID-19 pandemic, screening of febrile travelers from endemic countries is crucial in areas where competent vectors are present.


Subject(s)
Dengue Virus/isolation & purification , Dengue/diagnosis , Travel , Adult , Child, Preschool , Dengue/epidemiology , Dengue/immunology , Dengue/virology , Dengue Virus/genetics , Disease Outbreaks , Disease Transmission, Infectious , Female , Fever/etiology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Indonesia , Italy/epidemiology , Male , Middle Aged , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction
18.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: covidwho-796906

ABSTRACT

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , DNA, Single-Stranded/genetics , Electrophoresis, Agar Gel/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Sequence Analysis, RNA/methods , Base Sequence , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Dengue/diagnosis , Dengue/virology , Dengue Virus/genetics , Electrophoresis, Agar Gel/economics , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Saliva/virology , Sequence Analysis, RNA/economics , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/virology
19.
Rev Med Virol ; 31(2): e2161, 2021 03.
Article in English | MEDLINE | ID: covidwho-777660

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Dengue/epidemiology , Dengue/immunology , Animals , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Asia/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/immunology , Coinfection/virology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
20.
Nat Rev Immunol ; 20(10): 633-643, 2020 10.
Article in English | MEDLINE | ID: covidwho-711937

ABSTRACT

Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , Antibody-Dependent Enhancement/drug effects , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Leukocytes/drug effects , Pneumonia, Viral/drug therapy , Receptors, IgG/immunology , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/adverse effects , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dengue/drug therapy , Dengue/immunology , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Leukocytes/immunology , Leukocytes/virology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, IgG/antagonists & inhibitors , Receptors, IgG/genetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Signal Transduction , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL